
ODBC SQL Server Driver
What's New

Overview

System Requirements

Installation

SQL Server Data Sources

Connecting to a Data Source

SQL Server Driver Attributes (SQLGetInfo Return Values)

SQL Support

Datatype Support

Using ODBC Cursors

Error Messages

Selected Functions: Notes

Driver Implementation: Notes

Glossary

References

Installation
Installing the SQL Server Driver

Upgrading the Catalog Stored Procedures

SQL Server Data Sources
ODBC SQL Server Setup

Deleting a Data Source

Using SQLConfigDataSource to Change Data Sources

Connecting to a Data Source
Connecting to a SQL Server Data Source

SQLConnect

SQLDriverConnect

SQLBrowseConnect

Driver-specific Connection Options

SQL Support
SQL Grammar Limitations

Non-supported ODBC SQL Grammar

Nullability Resolution

Datatype Support
Datatype Usage

Datatype Mapping

Nullability Resolution

Using ODBC Cursors
Using ODBC Cursors

Creating Cursors
SQLSetStmtOption
SQLSetScrollOptions
SQLSetConnectOption
SQLSetCursorName
SQLGetCursorName
SQLGetStmtOption
SQLGetInfo

Retrieving Data from Cursors
SQLFetch
SQLExtendedFetch
SQLRowCount

Updating Cursors
SQLSetPos
SQLRowCount

Closing Cursors
SQLFreeStmt
SQLTransact

Selected Functions: Notes
ODBC API Function Implementation

SQLColAttributes, SQLDescribeCol, and SQLNumResultCols
SQLConfigDataSource
SQLPrepare
SQLBrowseConnect
SQLConnect
SQLDriverConnect
SQLParamOptions
SQLDescribeParam

Driver Implementation: Notes
Active hstmt

Cursor Library

Arithmetic Errors

Manual-commit Mode Transactions

Remote Procedure Calls

What's New
The following features of the ODBC SQL Server driver are new in version 2.5.

Full Level 2 Compliance
The SQL Server driver supports all Level 2 ODBC APIs. Support for the following APIs is new in
version 2.5.

SQLParamOptions

SQLDescribeParam

SQLSetPos

SQLExtendFetch

For details on these APIs, refer to this Help file, and to the ODBC API Reference.

Server Cursors
The SQL Server driver automatically uses server cursors (static, keyset, and dynamic) implemented in
SQL Server 6.0. This results in improved performance, cleaner cursor semantics (compared to the
cursor library in earlier versions), and more efficient memory usage at the client. Server cursors are not
used in the following cases:

· The user sets ODBC_CURSORS to SQL_CUR_USE_ODBC.
· The user declares the cursor to be forward-only, read-only, rowset = 1.
· The user declares the cursor to be static and updatable.

One key benefit of using server cursors is that you can have multiple active statements (several open
cursors) on the same connection. For more information about using SQL Server 6.0 server cursors with
ODBC functions, see Using ODBC Cursors.

Decimal and Numeric Datatypes
The driver supports full usage of decimal and numeric datatypes and provides the appropriate convert
functions to and from other datatypes.

The following ODBC functions return datatype information:

· SQLGetInfo
· SQLGetTypeInfo
· SQLColumns
· SQLDescribeCol
· SQLProcedureColumns
· SQLSpecialColumns

The following ODBC functions may involve conversions between the ODBC SQL and ODBC C
datatypes:

· SQLBindCol
· SQLBindParameter
· SQLGetData
· SQLPutData

Batched RPCs
The driver automatically batches RPC requests to the server when appropriate. This could drastically
reduce the number of trips to the server and result in an order of magnitude performance gain in many
cases. The driver batches RPC requests when the user issues a batch of canonical stored procedure
invocations or uses SQLParamOptions in conjunction with SQLPrepare/SQLExecute or a canonical
procedure invocation.

Prepare/Execute Statements
The driver creates temporary stored procedures (as opposed to regular stored procedures in earlier
versions) on a SQLPrepare. These procedures are automatically deleted when the connection is
abnormally terminated. Previously, stored procedures created on a Prepare were orphaned at the
server when the connection was abnormally terminated. In addition, the driver provides users with a
driver specific connection option (SQL_USE_PROCEDURE_FOR_PREPARE) that governs when
these temporary stored procedures are deleted. By default, they are deleted when the connection is
freed. When you are issuing several prepare/execute statements in a connection and need to conserve
usage of TempDB, you can have the driver delete these procedures when an hstmt is closed.

Use of SQL Server 6.0 Features
The driver takes advantage of the following new features in SQL Server v6.0.

· The driver uses the Set Transaction Isolation Level statement to
· expose the Read Uncommitted isolation level
· enforce strict serializability.
In earlier versions, the driver "manually" inserted a HoldLock in the FROM clause of SELECT
statements when the user had requested the Serializable option.

· The driver uses the SET FMTONLY statement to implement the SQLDescribeCol and
SQLColAttributes APIs. Previously, these APIs were implemented by issuing a "dummy" query that
did not return any results.

· The driver enforces the use of ANSI Quoted Identifiers and issues the SET QUOTED_IDENTIFIER
ON statement during the start-up sequence.

· The driver exposes SQL Server's ANSI '89 IEF using the SQLPrimaryKeys and SQLForeignKeys
APIs.

· The driver uses the Set ANSI_NULL_DFLT_ON statement to enforce ANSI compliant default
nullability for columns. In earlier versions, the driver "manually" inserted the Null keyword after
column specifications.

· The driver allows text/image parameters in stored procedures. Invocation of these stored
procedures is handled as an RPC request as opposed to a language event as in previous versions.

· The driver automatically uses the default packet size set at the server if one is not specified using
the ODBC SQLSetConnectOption.

Identity Attribute
The driver exposes the SQL Server 6.0 Identity Attribute using the
SQL_COLUMN_AUTO_INCREMENT descriptor in SQLColAttributes and the AUTO_INCREMENT
column in the SQLGetTypeInfo result set. SQL Server treats identity as an attribute whereas ODBC
treats it as a datatype. To resolve this mis-match, SQLGetTypeInfo returns the following five new
datatypes:

· int identity
· smallint identity

· tinyint identity
· decimal identity
· numeric identity

Text/Image Processing
The driver has several enhancements to the processing of text and image data.

· When connected to SQL Server 6.0, the driver uses the new UPDATETEXT function in the server to
support updating the text/image columns of all rows when the UPDATE statement affects multiple
rows. When connected to SQL Server 4.2x, only the text/image columns of the first row (of a multi-
row UPDATE) will be updated.

· The driver exposes a driver specific statement option (SQL_TEXTPTR_LOGGING) to disable the
logging of text/image operations.

· When using server cursors, the driver does not retrieve text/image data for unbound columns unless
the user explicitly issues the SQLGetData call.

· When connected to SQL Server 6.0, SQLExecDirect and SQLExecute do not require the
SQL_LEN_DATA_AT_EXEC macro, but using the macro is more efficient.

Performance Improvements
The driver has added the following performance-related features:

· Improved Connect TimeThe driver batches informational queries to the server when making a
connection that reduces the number of trips to the server. The fast connect option is no longer
needed or supported.

· The driver makes better use of memory (eliminating copies) for faster processing of results.
· 64-bit ArithmeticThe 32-bit driver uses 64-bit arithmetic for data conversions to/from money, decimal

and numeric datatypes.

Integrated Security
The driver provides a driver specific option (SQL_INTEGRATED_SECURITY) to request a secure
connection from SQL Server 6.0.

SQLExtendedFetch for 4.2a SQL Server
The driver supports the SQLExtendedFetch API (forward-only, read-only cursors) for SQL Server
4.21a.

DSN
When you install the 32-bit driver, you have the option to convert existing 16-bit DSNs to 32-bit DSNs
so they can be used by 32-bit applications. In addition, the driver uses the OEMtoANSI setting from the
Client Configuration Utility as the default when a new DSN is defined.

DayOfWeek
The driver supports the DayOfWeek canonical function defined in ODBC.

Literal Params in Procedures
The driver executes canonical procedure invocations that have literal parameters as an RPC request.
In earlier versions, unless the invocation had all parameter markers, the request was issued as a

language event.

SQLGetInfo Changes
For more information, see the SQLGetInfo function.

INSTCAT.SQL
The catalog stored procedures expose the new functionality added in version 2.5 and improves
performance over previous versions.

DBCS
The version 2.5 driver is DBCS enabled.

Arithmetic Errors
The version 2.5 driver uses SET ARITHABORT ON to provide better ODBC semantics.

ODBC SDK
The ODBC SDK is included as part of the Microsoft SQL Workstation version 6.0.

Overview
Microsoft SQL Server is a multiuser relational database management system (DBMS) that runs on the
Microsoft Windows NT operating system. Both 16- and 32-bit versions of the SQL Server ODBC driver
are available. Structured Query Language (SQL) is used to access data in a SQL Server database.
Client workstations communicate with SQL Server across a network, such as a Windows NT Server,
Novell NetWare, Banyan VINES, or TCP/IP network.

The SQL Server driver enables applications to access data in Microsoft SQL Server databases through
the Open Database Connectivity (ODBC) interface.

Note that the 32-bit SQL Server driver is thread safe. The driver will serialize shared access by multiple
threads to shared hstmt, hdbc, and henv objects. However, the ODBC program is still responsible for
keeping operations within statement and connection spaces in the proper sequence, even when the
program uses multiple threads.

This is the application/driver architecture for 16-bit environments:

 Application (16-bit) Application (32-bit in Win32s)
| |

32-bit Thunking Driver Manager
(ODBC32.DLL)

| |
ODBC Universal Thunking DLL

(ODBC16UT.DLL)
| |
ODBC Driver Manager

(ODBC.DLL)
|

ODBC Cursor Library (optional)
(ODBCCURS.DLL)

|
SQL Server Driver (16-bit)

(SQLSRVR.DLL)
|

Net-Library
(DBNMP3.DLL, DBMSSPX3.DLL, etc.)

|
Network Software

(Windows NT, Windows for Workgroups, Novell NetWare, etc.)
|

Microsoft SQL Server

This is the application/driver architecture for 32-bit environments:

Application (16-bit) Application (32-bit)
| |

ODBC Driver Manager ODBC Driver Manager
(ODBC.DLL) (ODBC32.DLL)

| |
ODBC Cursor Library (optional) ODBC Cursor Library (optional)

(ODBCCURS.DLL) (ODBCCR32.DLL)
| |

16-Bit ODBC Generic Thunking DLL

(ODBC16GT.DLL)
| |

32-Bit ODBC Generic Thunking DLL
(ODBC32GT.DLL)

| |
SQL Server Driver (32-bit)

(SQLSRV32.DLL)
|

Net-Library
(DBNMPNTW.DLL, DBMSSPXN.DLL, etc.)

|
Network Software

(Windows NT, Windows for Workgroups, Novell NetWare, etc.)
|

Microsoft SQL Server

Thunking means intercepting a function call, doing some special processing to translate between 16-bit
and 32-bit code, and then transferring control to a target function.

See Also

Installing the SQL Server Driver

ODBC SQL Server Setup

Connecting to a SQL Server Data Source

System Requirements

System Requirements
To access SQL Server data, you must have:
· The SQL Server driver.
· Microsoft SQL Server.
· Network software that the computers on which the driver and SQL Server reside (not required when

connecting to a local (non-network) desktop SQL Server).

The hardware and software requirements of each of these components follows.

SQL Server Driver
Hardware Requirements:

· An Industry Standard Architecture (ISA) computer, such as the IBM PC/AT or compatible,
Or
A Micro Channel Architecture (MCA) computer, such as an IBM PS/2 or compatible,
Or
An Extended Industry Standard Architecture (EISA) computer with an 80286, 80386, 80486, or
Pentium microprocessor,
Or
An Alpha AXP or MIPS microprocessor.

· At least 2 MB of RAM; 4 MB recommended.
· A hard disk drive with approximately 300K of hard disk space for the SQL Server driver and ODBC

Driver Manager.

Software Requirements:

· Microsoft Windows version 3.1 or later (16-bit driver)
· Microsoft Windows 95 or Windows NT 3.5 or later (32-bit driver)

For information about the hardware and software required for SQL Server clients, see Microsoft SQL
Server Setup.

SQL Server
To use the SQL Server driver to access data in Microsoft SQL Server databases, you must have
Microsoft SQL Server version 4.21A or later. The catalog stored procedures must be installed on your
SQL Server. You may need to install the catalog stored procedures shipped with this driver when using
version 4.21A of Microsoft SQL Server (see the Upgrading the Catalog Stored Procedures topic). For
information about the hardware and software required by SQL Server, see Microsoft SQL Server
Setup.

Network Software
Network software is required to connect the computers on which the SQL Server driver and SQL
Server reside. To connect to a SQL Server, you can use Microsoft Windows NT, Microsoft Windows for
Workgroups, or a compatible network such as IBM LAN Server or DEC Pathworks, Novell NetWare, or
Banyan VINES. For information about the hardware and software required by each network, see your
network documentation.

The SQL Server driver communicates with network software through the SQL Server NetLibrary
interface, which requires a Net-Library dynamic-link library (DLL). For more information about

supported network configurations and Net-Library files, see Microsoft SQL Server Setup.

See Also

Installing the SQL Server Driver

Installing the SQL Server Driver
The SQL Server ODBC driver is installed automatically when you install the SQL Server 6.0 client
software on a computer running Windows NT, Windows 95, or Windows 3.11. For more information
about installing SQL Server 6.0 client software, see Microsoft SQL Server Setup.

If you need to reinstall just the SQL Server ODBC driver, you can run the ODBC setup program from
the ODBC subdirectory of the appropriate client install directory.

To use the SQL Server driver you usually add a data source for each installation of SQL Server in
which you want to access data. See the SQL Server Data Sources topic.

If you are using Microsoft SQL Server version 4.21A, the INSTCAT.SQL included with this driver
includes minor fixes to the catalog stored procedures. To install the updated catalog stored procedures,
follow the instructions for Upgrading the Catalog Stored Procedures.

See Also

SQL Server Data Sources

System Requirements

Error Messages
When an error occurs, the SQL Server driver returns the native error number, the SQLSTATE (an
ODBC error code), and an error message. The driver derives this information both from errors detected
by the driver and errors returned by SQL Server.

Native Error Numbers
For errors that occur in the data source (returned by SQL Server), the SQL Server driver returns the
native error number returned to it by SQL Server. For errors detected by the driver, the SQL Server
driver returns a native error number of zero. For a list of native error numbers, see the error column of
the sysmessages system table in the master database in SQL Server.

SQLSTATE (ODBC Error Codes)
For errors that occur in the data source that are detected and returned by SQL Server, the SQL Server
driver maps the returned native error number to the appropriate SQLSTATE. If a native error number
does not have an ODBC error code to map to, the SQL Server driver returns SQLSTATE 37000
(Syntax error or access violation). For errors that are detected by the driver, the SQL Server driver
generates the appropriate SQLSTATE.

Error Messages
For errors that occur in the data source and are detected and returned by SQL Server, the SQL Server
driver returns an error message based on the message returned by SQL Server. For errors that occur
in the SQL Server driver or the Driver Manager, the SQL Server driver returns an error message based
on the text associated with the SQLSTATE. For a list of error messages that can be returned by
SQL Server (but not by the SQL Server driver), see the description column of the sysmessages system
table in the master database in SQL Server.

Syntax
Error messages have the following format:

[vendor][ODBC_component][data_source]error_message
where the prefixes in brackets ([]) identify the source of the error as defined in the following table.

Note When the error occurs in the data source, the [vendor] and [ODBC_component] prefixes identify
the vendor and name of the ODBC component that received the error from the data source.

Data source Prefix Value
Driver Manager [vendor]

[ODBC_component]
[data_source]

[Microsoft]
[ODBC Driver Manager]
N/A

Cursor Library [vendor]
[ODBC_component]
[data_source]

[Microsoft]
[ODBC Cursor Library]
N/A

SQL Server
driver

[vendor]
[ODBC_component]
[data_source]

[Microsoft]
[ODBC SQL Server
Driver]
N/A

SQL Server [vendor]
[ODBC_component]

[Microsoft]
[ODBC SQL Server

[data_source] Driver]
[SQL Server]

Upgrading the Catalog Stored Procedures
The SQL Server driver uses a set of system stored procedures, known as catalog stored procedures,
to obtain information from the SQL Server system catalog. Microsoft SQL Server installs the catalog
stored procedures automatically when you install or upgrade SQL Server. The INSTCAT.SQL file
included with this driver includes minor updates to the catalog stored procedures. Having the SQL
Server system administrator upgrade the catalog stored procedures on a server running Microsoft SQL
Server version 4.21A is recommended but not required.

To upgrade the catalog stored procedures, the system administrator runs a script using the isql utility
(see the instructions below). Before making any changes to the master database, the system
administrator should back it up. To run isql, your computer must be installed as a client workstation for
Microsoft SQL Server.

To upgrade the catalog stored procedures
· At the command prompt, use the isql utility to run the INSTCAT.SQL script. For example, C:>

ISQL /Usa /Psa_password /Sserver_name /ilocation\INSTCAT.SQL
where
location is the full path of the location of INSTCAT.SQL. You can use the INSTCAT.SQL from an
installed SQL Server 6.0 (the default location is C:\SQL60\INSTALL) or from the SQL Server 6.0 CD
(the default location is D:\platform where D is the CD drive letter and platform is the appropriate
server platform directory, such as I386).
sa_password is the system administrator's password.
server_name is the name of the server on which SQL Server resides.

The INSTCAT.SQL script generates messages. Ignore these.

The INSTCAT.SQL script fails when there is not enough room in the master database to store the
catalog stored procedures or to log the changes to existing procedures. If the INSTCAT.SQL script fails,
contact your system administrator.

The SQL Server driver uses the following catalog stored procedures.

Stored Procedure Returns
sp_column_privileges Information about column privileges for the

specified table(s)
sp_columns Information about columns for the specified

table(s)
sp_databases A list of databases
sp_datatype_info Information about the supported datatypes
sp_fkeys Information about logical foreign keys
sp_pkeys Information about primary keys
sp_server_info A list of attribute names and matching

values for the server
sp_special_columns Information for a single table about columns

in the table that have special attributes
sp_sproc_columns Column information for a stored procedure
sp_statistics A list of indexes for a single table
sp_stored_procedures A list of stored procedures
sp_table_privileges Information about table privileges for the

specified table(s)
sp_tables A list of objects that can be queried

For additional information about the catalog stored procedures, see the Microsoft SQL Server Transact-
SQL Reference.

ODBC SQL Server Setup
To access the ODBC SQL Server Setup dialog box
1. From Control Panel, double-click the ODBC icon.

Note When using 16-bit drivers on Microsoft Windows NT, in the Program Manager window, open
the Microsoft ODBC group and double-click the Microsoft ODBC Administrator icon.

2. The Data Sources dialog box appears. Choose the Add button.
The Add Data Source dialog box appears.

3. From the Installed ODBC Drivers list, select SQL Server, and then choose OK.
The ODBC SQL Server Setup dialog box appears.

The ODBC SQL Server Setup dialog box has the following options.

Data Source Name

The name of the data source. For example, "Personnel Data."

Description

A description of the data in the data source. For example, "Hire date, salary history, and current review
of all employees."

Server

The name of a SQL Server on your network. You can select a server from the list or enter the server
name.

"(local)" can be entered as the server on a Microsoft Windows NT computer. The user can then use a
local copy of SQL Server (that listens on named pipes), even when running a non-networked version of
SQL Server. Note that when the 16-bit SQL Server driver is using "(local)" without a network, the MS
Loopback Adapter must be installed.

For more information about server names for different types of networks, see Microsoft SQL Server
Setup.

Network Address

The address of the SQL Server database management system (DBMS) from which the driver retrieves
data. For Microsoft SQL Server you can usually leave this value set to (Default).

Network Library

The name of the SQL Server Net-Library DLL that the SQL Server driver uses to communicate with the
network software. If the value of this option is (Default) the SQL Server driver uses the client
computer's default Net-Library, which is specified in the Default Network box in the Net-Library tab of
the SQL Server Client Configuration Utility.

If you create a data source using a Network Library other than (Default) and optionally a Network
Address, ODBC SQL Server Setup will create a server name entry that you can see in the Advanced
tab in the SQL Server Client Configuration Utility. These server name entries can also be used by DB-
Library applications.

Options

To access the following fields, click the Options button.

Database Name

The name of the SQL Server database.

Language Name

The national language used by SQL Server.

Generate Stored Procedures for Prepared Statements

Stored procedures are created for prepared statements when this option is selected (the default). The
SQL Server driver prepares a statement by placing it in a procedure and compiling that procedure.

When this option checkbox is clear, the creation of stored procedures for prepared statements is
disabled. In this case, a prepared statement is stored and executed at execution time.

Translation

The description of the current translator. To select a different translator, choose the Select button and
select from the list in the Select Translator dialog box.

Convert OEM to ANSI Characters

If the SQL Server client computer and SQL Server are using the same non-ANSI character set select
this option. For example, if SQL Server uses code page 850 and this client computer uses code page
850 for the OEM code page, selecting this option will ensure that extended characters stored in the
database are property converted to ANSI for use by Windows-based applications.

When this option checkbox is clear and the SQL Server client machine and SQL Server are using
different character sets, you must specify a character set translator.

See Also

Driver-specific Connection Options

Using SQLConfigDataSource to Change Data Sources

Using SQLConfigDataSource to Change Data Sources
You can call the SQLConfigDataSource API function to add, modify, or delete a data source
dynamically. This function uses keywords to set connection options that are normally set through the
ODBC SQL Server Setup dialog box. Use this function when you want to add, modify, or delete a data
source without displaying the ODBC SQL Server Setup dialog box.

Deleting a Data Source
To delete a data source, in the Data Sources dialog box select the data source you want to delete from
the Data Sources list. Choose the Delete button, and then choose the Yes button to confirm the
deletion.

You may be asked if you want to remove the data source name and its associated information from the
WIN.INI file or registry. Other applications that call SQL Server may use this information to connect to
SQL Server data sources.

Choose the Yes button if you are certain that no other applications use the information about the data
source; otherwise, choose the No button.

SQLGetInfo Return Values
The following table lists the C language #defines for the fInfoType argument and the corresponding
values returned by SQLGetInfo when connected to SQL Server 6.0. An application retrieves this
information by passing the listed C language #defines to SQLGetInfo in the fInfoType argument.

fInfoType argument (#define) Value returned by SQLGetInfo
SQL_ACCESSIBLE_PROCEDU
RES

Y

SQL_ACCESSIBLE_TABLES Y
SQL_ACTIVE_CONNECTIONS 0

(The number of active
connections is determined by
the number of network
connections available on the
client computer and the number
of connections allowed by the
server DBMS.)

SQL_ACTIVE_STATEMENTS 1
(Even though this value is 1, the
driver supports multiple active
statements on a connection if
server cursors are being used.
See Using ODBC Cursors).

SQL_ALTER_TABLE SQL_AT_ADD_COLUMN
SQL_BOOKMARK_PERSISTEN
CE

0

SQL_COLUMN_ALIAS Y
SQL_CONCAT_NULL_BEHAVIO
R

SQL_CB_NON_NULL

SQL_CONVERT_FUNCTIONS SQL_FN_CVT_CONVERT
SQL_CONVERT_type
where type is the SQL datatype,
such as CHAR

See the Datatype Mapping topic.

SQL_CORRELATION_NAME SQL_CN_ANY
SQL_CURSOR_COMMIT_BEHA
VIOR

SQL_CB_CLOSE
(This is the ANSI-specified
behavior. Recognizing the need
for many applications to
preserve server cursor currency
across commits/rollbacks, the
driver provides a driver-specific
option,
SQL_PRESERVE_CURSORS,
to override the ANSI default.)

SQL_CURSOR_ROLLBACK_
BEHAVIOR

SQL_CB_CLOSE
(This is the ANSI-specified
behavior. Recognizing the need
for many applications to
preserve server cursor currency
across commits/rollbacks, the

driver provides a driver-specific
option,
SQL_PRESERVE_CURSORS,
to override the ANSI default.)

SQL_DBMS_NAME Microsoft SQL Server
SQL_DEFAULT_TXN_ISOLATIO
N

SQL_TXN_READ_COMMITTED
.

SQL_DRIVER_NAME SQLSRVR.DLL (16-bit)
SQLSRV32.DLL (32-bit)

SQL_DRIVER_ODBC_VER 02.50
SQL_DRIVER_VER 02.50.nnnn

(where nnnn specifies the build
number)

SQL_EXPRESSIONS_IN_ORDE
RBY

Y

SQL_FETCH_DIRECTION SQL_FD_FETCH_NEXT
SQL_FD_FETCH_FIRST
SQL_FD_FETCH_LAST
SQL_FD_FETCH_PRIOR
SQL_FD_FETCH_ABSOLUTE
SQL_FD_FETCH_RELATIVE

SQL_FILE_USAGE SQL_FILE_NOT_SUPPORTED
SQL_GETDATA_EXTENSIONS SQL_GD_BLOCK
SQL_GROUP_BY SQL_GB_GROUP_BY_CONTAI

NS_SELECT
SQL_IDENTIFIER_CASE (Depends on whether

SQL Server was installed as
case-sensitive or not case-
sensitive.)

SQL_IDENTIFIER_QUOTE_CHA
R

" (Double quote)

SQL_KEYWORDS BREAK
BROWSE
BULK
CHECKPOINT
CLUSTERED
COMMITTED
COMPUTE
CONFIRM
CONTROLROW
DATABASE
DBCC
DISK
DUMMY
DUMP
ERRLVL
ERROREXIT
EXIT
EXPIREDATE
FILE
FILLFACTOR
FLOPPY

GETDEFAULT
HOLDLOCK
IDENTITY_INSERT
IDENTITYCOL
IF
KILL
LINENO
LOAD
MIRROREXIT
NONCLUSTERED
OFF
OFFSETS
ONCE
OVER
PERM
PERMANENT
PLAN
PRINT
PROC
PROCESSEXIT
PUBLIC
RAISERROR
READ
READTEXT
RECONFIGURE
REPEATABLE
RETAINDATE
RETURN
ROWCOUNT
RULE
SAVE
SERIALIZABLE
SETUSER
SHUTDOWN
STATISTICS
TAPE
TEMP
TEXTSIZE
TRAN
TRIGGER
TRUNCATE
TSEQUEL
UNCOMMITTED
UPDATETEXT
USE
VOLUME
WAITFOR
WHILE
WRITETEXT

SQL_LIKE_ESCAPE_CLAUSE N
SQL_LOCK_TYPES SQL_LCK_NO_CHANGE
SQL_MAX_BINARY_LITERAL_L
EN

131072

SQL_MAX_CHAR_LITERAL_LE 131072

N
SQL_MAX_COLUMN_NAME_LE
N

30

SQL_MAX_COLUMNS_IN_GRO
UP_

BY

16

SQL_MAX_COLUMNS_IN_INDE
X

16

SQL_MAX_COLUMNS_IN_ORD
ER_

BY

16

SQL_MAX_COLUMNS_IN_SELE
CT

4000

SQL_MAX_COLUMNS_IN_TABL
E

250

SQL_MAX_CURSOR_NAME_LE
N

30

SQL_MAX_INDEX_SIZE 256
SQL_MAX_OWNER_NAME_LE
N

30

SQL_MAX_PROCEDURE_NAM
E_LEN

36
(1 to 30 characters followed by a
semicolon [;] and one to five
digits)

SQL_MAX_QUALIFIER_NAME_
LEN

30

SQL_MAX_ROW_SIZE 1962
SQL_MAX_ROW_SIZE_INCLUD
ES_
 LONG

N

SQL_MAX_STATEMENT_LEN 131072
SQL_MAX_TABLE_NAME_LEN 30
SQL_MAX_TABLES_IN_SELEC
T

16

SQL_MAX_USER_NAME_LEN 30
SQL_MULT_RESULT_SETS Y
SQL_MULTIPLE_ACTIVE_TXN Y
SQL_NEED_LONG_DATA_LEN Y
SQL_NON_NULLABLE_COLUM
NS

SQL_NNC_NON_NULL

SQL_NULL_COLLATION SQL_NC_LOW
SQL_NUMERIC_FUNCTIONS SQL_FN_NUM_ABS

SQL_FN_NUM_ACOS
SQL_FN_NUM_ASIN
SQL_FN_NUM_ATAN
SQL_FN_NUM_ATAN2
SQL_FN_NUM_CEILING
SQL_FN_NUM_COS
SQL_FN_NUM_COT

SQL_FN_NUM_DEGREES
SQL_FN_NUM_EXP
SQL_FN_NUM_FLOOR
SQL_FN_NUM_LOG
SQL_FN_NUM_LOG10
SQL_FN_NUM_MOD
SQL_FN_NUM_PI
SQL_FN_NUM_POWER
SQL_FN_NUM_RADIANS
SQL_FN_NUM_RAND
SQL_FN_NUM_ROUND
SQL_FN_NUM_SIGN
SQL_FN_NUM_SIN
SQL_FN_NUM_SQRT
SQL_FN_NUM_TAN

SQL_ODBC_API_CONFORMAN
CE

SQL_OAC_LEVEL2

SQL_ODBC_SAG_CLI_
CONFORMANCE

SQL_OSCC_NOT_COMPLIANT

SQL_ODBC_SQL_CONFORMA
NCE

SQL_OSC_CORE

SQL_ODBC_SQL_OPT_IEF Y
SQL_ORDER_BY_COLUMNS_I
N_

SELECT_SQL_OJ_CAPABILITIE
S

N
SQL_OJ_LEFT
SQL_OJ_RIGHT
SQL_OJ_NESTED

SQL_OUTER_JOINS Y
SQL_OWNER_TERM owner
SQL_OWNER_USAGE SQL_OU_DML_STATEMENTS

SQL_OU_PROCEDURE_
 INVOCATION
SQL_OU_TABLE_DEFINITION
SQL_OU_INDEX_DEFINITION
SQL_OU_PRIVILEGE_
 DEFINITION

SQL_POS_OPERATIONS SQL_POS_ADD
SQL_POS_DELETE
SQL_POS_POSITION
SQL_POS_REFRESH
SQL_POS_UPDATE

SQL_POSITIONED_STATEMEN
TS

SQL_PS_POSITIONED_DELET
E
SQL_PS_POSITIONED_UPDAT
E
SQL_PS_SELECT_FOR_
 UPDATE

SQL_PROCEDURE_TERM stored procedure
SQL_PROCEDURES Y
SQL_QUALIFIER_LOCATION SQL_QL_START
SQL_QUALIFIER_NAME_ .

SEPARATOR (period)
SQL_QUALIFIER_TERM database
SQL_QUALIFIER_USAGE SQL_QU_DML_STATEMENTS,

SQL_QU_PROCEDURE_
 INVOCATION,
SQL_QU_TABLE_DEFINITION

SQL_QUOTED_IDENTIFIER_CA
SE

(Depends on whether
SQL Server was installed as
case-sensitive or not case-
sensitive.)

SQL_ROW_UPDATES N
SQL_SCROLL_CONCURRENC
Y

SQL_SCCO_LOCK
SQL_SCCO_OPT_ROWVER
SQL_SCCO_OPT_VALUES
SQL_SCCO_READ_ONLY

SQL_SCROLL_OPTIONS SQL_SO_DYNAMIC
SQL_SO_FORWARD_ONLY
SQL_SO_KEYSET_DRIVEN
SQL_SO_STATIC

SQL_SEARCH_PATTERN_ESC
APE

"\"
(backslash)

SQL_SPECIAL_CHARACTERS #$ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔ
ÕÖØÙÚÛÜÝÞßàáâãäåæçèéêëì
íîïðñòóôõöøùúûüýþÿ

SQL_STATIC_SENSITIVITY SQL_SS_ADDITIONS
SQL_SS_UPDATES

SQL_STRING_FUNCTIONS SQL_FN_STR_ASCII,
SQL_FN_STR_CHAR,
SQL_FN_STR_CONCAT,
SQL_FN_STR_DIFFERENCE,
SQL_FN_STR_INSERT,
SQL_FN_STR_LCASE,
SQL_FN_STR_LEFT,
SQL_FN_STR_LENGTH,
SQL_FN_STR_LOCATE_2,
SQL_FN_STR_LTRIM,
SQL_FN_STR_REPEAT,
SQL_FN_STR_RIGHT,
SQL_FN_STR_RTRIM,
SQL_FN_STR_SOUNDEX,
SQL_FN_STR_SPACE,
SQL_FN_STR_SUBSTRING,
SQL_FN_STR_UCASE

SQL_SUBQUERIES SQL_SQ_COMPARISON,
SQL_SQ_EXISTS,
SQL_SQ_IN,
SQL_SQ_QUANTIFIED,
SQL_SQ_CORRELATED_
 SUBQUERIES

SQL_SYSTEM_FUNCTIONS SQL_FN_SYS_DBNAME,
SQL_FN_SYS_IFNULL,
SQL_FN_SYS_USERNAME,

SQL_TABLE_TERM table
SQL_TIMEDATE_ADD_INTERV
ALS

SQL_FN_TSI_FRAC_SECOND,
SQL_FN_TSI_SECOND,
SQL_FN_TSI_MINUTE,
SQL_FN_TSI_HOUR,
SQL_FN_TSI_DAY,
SQL_FN_TSI_WEEK,
SQL_FN_TSI_MONTH,
SQL_FN_TSI_QUARTER,
SQL_FN_TSI_YEAR

SQL_TIMEDATE_DIFF_INTERV
ALS

SQL_FN_TSI_FRAC_SECOND,
SQL_FN_TSI_SECOND,
SQL_FN_TSI_MINUTE,
SQL_FN_TSI_HOUR,
SQL_FN_TSI_DAY,
SQL_FN_TSI_WEEK,
SQL_FN_TSI_MONTH,
SQL_FN_TSI_QUARTER,
SQL_FN_TSI_YEAR,

SQL_TIMEDATE_FUNCTIONS SQL_FN_TD_NOW,
SQL_FN_TD_CURDATE,
SQL_FN_TD_DAYOFMONTH,
SQL_FN_TD_DAYOFWEEK,
SQL_FN_TD_DAYOFYEAR,
SQL_FN_TD_DAYNAME,
SQL_FN_TD_MONTH,
SQL_FN_TD_MONTHNAME,
SQL_FN_TD_QUARTER,
SQL_FN_TD_WEEK,
SQL_FN_TD_YEAR,
SQL_FN_TD_CURTIME,
SQL_FN_TD_HOUR,
SQL_FN_TD_MINUTE,
SQL_FN_TD_SECOND,
SQL_FN_TD_TIMESTAMPADD,
SQL_FN_TD_TIMESTAMPDIFF

SQL_TXN_CAPABLE SQL_TC_DML
SQL_TXN_ISOLATION_OPTION SQL_TXN_READ_COMMITTED

SQL_TXN_READ_
 UNCOMMITTED
SQL_TXN_REPEATABLE_REA
D
SQL_TXN_SERIALIZABLE

SQL_UNION SQL_U_UNION,
SQL_U_UNION_ALL

Connecting to a SQL Server Data Source
When an application connects to SQL Server, using SQLDriverConnect, the application may generate
a prompt for data source information. This prompt can be in the form of a Data Source query or a
dialog box. For a Data Source query, enter the name of the data source. For a dialog box, complete the
dialog box as follows:

1. Enter or select the server name.
2. In the Login ID entry field, type your SQL Server login ID.
3. In the Password entry field, type your SQL Server password.
4. Choose OK.

For information about the SQL Server login security mode and secure connections, see the Microsoft
SQL Server Administrator's Companion.

To enter optional connection information, such as the database to access and the language for
SQL Server to use, choose the Options button.

1. From the Database list box, select the database you want to access.*
When you open the list box, the user's default database is selected.

2. From the Language box, select the language you want SQL Server to use.*
When you open the list box, the user's default language is selected.

3. If the application name displayed is incorrect, enter the correct application name.
The application name is the name of the application that is calling the SQL Server driver.

4. If the workstation ID displayed is incorrect, enter the correct workstation ID.
Typically, this is the network name of the computer on which the application resides.

5. Choose OK.

* Setting the default database and language for the login ID in SQL Server is more efficient than
specifying them as DSN options.

Using ODBCPING.EXE to Verify a Connection

You can use the ODBCPING.EXE utility to check whether ODBC is properly installed by connecting to
a server using the ODBC SQL Server Driver. This utility is a 32-bit application that is stored in the \
SQL60\BINN directory. To verify ODBC connectivity, from a command prompt, type:

odbcping /Sservername /Ulogin_id /Ppassword

where

servername
Is the name of a server you will connect to.

login_id
Is a valid login ID for that server.

password
Is the password for that login ID.

If the ODBC connection is established, this message is displayed:

CONNECTED TO SQL SERVER

If the ODBC connection cannot be established, this message is displayed:

COULD NOT CONNECT TO SQL SERVER

See Also

ODBC SQL Server Setup

SQLBrowseConnect

SQLConnect

SQLDriverConnect

data source (SQL Server)
A data source includes the data a user wants to access and the information needed to access that
data. For the SQL Server driver, a data source is a Microsoft SQL Server database, the server on
which it resides, and the network used to access that server.

Driver-specific Connection Options
SQL Server driver supports the following driver-specific connection options in SQLSetConnectOption
and SQLGetConnectOption.

Option Description
SQL_INTEGRATED_SECURITY SQL_IS_OFF. Request a normal connection to SQL

Server. A trusted connection using SQL Server
integrated security is not requested. (Default)
SQL_IS_ON. Request a trusted connection to SQL
Server regardless of the security mode of the server.
For information about the SQL Server login security
mode and trusted connections, see the Microsoft SQL
Server Administrator's Companion.

SQL_USE_PROCEDURE
_FOR_PREPARE

SQL_UP_ON. Temporary stored procedures are
generated for SQLPrepare. (Default)
SQL_UP_OFF. Temporary stored procedures are not
generated for SQLPrepare. The statement is stored,
compiled, and executed at execution time. All syntax
error checking is delayed until execution time.
SQL_UP_ON_DROP. Temporary stored procedures
are explicitly dropped on a subsequent call to
SQLPrepare or when an hstmt is freed.

SQL_PRESERVE_CURSORS SQL_PC_OFF. All cursors are closed on
SQLTransact. (Default)
SQL_PC_ON. Server cursors remain open on
SQLTransact.

Driver-specific Option #Defines
The following are SQL Server-specific defines.

//
//

SQLSetConnectOption/SQLSetStmtOption driver
specific defines 1200-1249 are reserved.

// Connection Options

#define SQL_USE_PROCEDURE_FOR_PREPARE 1202

#define SQL_INTEGRATED_SECURITY * 1203

#define SQL_PRESERVE_CURSORS 1204

// Statement Options

#define SQL_TEXTPTR_LOGGING 1225

// SQL_USE_PROCEDURE_FOR_PREPARE Defines

#define SQL_UP_OFF 0L

#define SQL_UP_ON 1L

#define SQL_UP_ON_DROP 2L

#define SQL_UP_DEFAULT SQL_UP_ON

// SQL_INTEGRATED_SECURITY Defines

#define SQL_IS_OFF 0L

#define SQL_IS_ON 1L

#define SQL_IS_DEFAULT SQL_IS_OFF

// SQL_PRESERVE_CURSORS Defines

#define SQL_PC_OFF 0L

#define SQL_PC_ON 1L

#define SQL_PC_DEFAULT SQL_PC_OFF

// SQL_TEXTPTR_LOGGING Defines

#define SQL_TL_OFF 0L

#define SQL_TL_ON 1L

#define SQL_TL_DEFAULT SQL_TL_ON

* Only useable before connecting.

Datatype Mapping
The SQL Server driver maps SQL Server SQL datatypes to ODBC SQL datatypes. The following table
lists all SQL Server SQL datatypes and shows the ODBC SQL datatypes to which they are mapped.

SQL Server datatypes ODBC SQL datatype
binary SQL_BINARY
bit SQL_BIT
char, character SQL_CHAR
datetime SQL_TIMESTAMP
decimal, dec
(SQL Server 6.0)

SQL_DECIMAL

float, double precision,
float(n) for n = 8-15

SQL_FLOAT

image SQL_LONGVARBINARY
int, integer SQL_INTEGER
money SQL_DECIMAL
numeric
(SQL Server 6.0)

SQL_NUMERIC

real, float(n) for n = 1-7 SQL_REAL
smalldatetime SQL_TIMESTAMP
smallint SQL_SMALLINT
smallmoney SQL_DECIMAL
sysname SQL_VARCHAR
text SQL_LONGVARCHAR
timestamp* SQL_BINARY (SQL Server 6.0)

SQL_VARBINARY (SQL Server 4.2x)
tinyint SQL_TINYINT
varbinary, binary varying SQL_VARBINARY
varchar, character varying,
char varying

SQL_VARCHAR

* The timestamp datatype is converted to the SQL_VARBINARY or SQL_BINARY datatype because
values in timestamp columns are not datetime data, but varbinary(8) or binary(8) data, indicating the
sequence of SQL Server activity on the row.

Note The SQL Server driver does not convert SQL data of types SQL_CHAR, SQL_VARCHAR, or
SQL_LONGVARCHAR to C data of types SQL_C_DATE or SQL_C_TIME. All other conversions are
supported for the ODBC SQL datatypes listed in this topic. For information on supported conversions,
see Appendix D of the Microsoft ODBC SDK Programmer's Reference.

Datatype Usage
The SQL Server driver and SQL Server impose the following usage of datatypes.

Datatype Limitation
Date literals Date literals, when stored in an SQL_TIMESTAMP column

(SQL Server types of datetime or smalldatetime), have a time
value of 12:00:00.000 A.M. (midnight).

money and
smallmoney

Only the integer parts of the money and smallmoney datatypes
are significant. If the decimal part of SQL money data is
truncated during datatype conversion, the SQL Server driver
returns a warning, not an error.

SQL_BINARY If an SQL_BINARY column is nullable, the data stored in the
data source is not padded with zeroes. When data from such a
column is retrieved, the SQL Server driver pads it with zeroes
on the right. However, data created in operations performed by
SQL Server, such as concatenation, doesn't have such
padding.

SQL_CHAR
(truncation)

When data is placed into a SQL_CHAR column, SQL Server
truncates it on the right without warning if it is too long to fit into
the column.

SQL_CHAR
(nullable)

If a SQL_CHAR column is nullable, the data stored in the data
source is not padded with blanks. When data from such a
column is retrieved, the SQL Server driver pads it with blanks
on the right. However, data created in operations performed by
SQL Server, such as concatenation, doesn't have such
padding.

SQL_LONGVAR
BINARY,
SQL_LONGVAR
CHAR

Updates of columns with SQL_LONGVARBINARY or
SQL_LONGVARCHAR datatypes (using a WHERE clause)
that affect multiple rows are fully supported when connected to
SQL Server 6.0. When connected to SQL Server version 4.2x,
a S1000 error "Partial insert/update. The insert/update of a text
or image column(s) did not succeed" is returned if the update
affects more than one row.

String Function
Parameters

string_exp parameters to the string functions must be of type
SQL_CHAR or SQL_VARCHAR. SQL_LONG_VARCHAR
types are not supported in the string functions. The count
parameter must be less than or equal to 255, since the
SQL_CHAR and SQL_VARCHAR datatypes are limited to a
maximum length of 255 characters.

Time literals Time literals, when stored in an SQL_TIMESTAMP column
(SQL Server types of datetime or smalldatetime), have a date
value of January 1, 1900.

timestamp Only a Null value can be manually inserted into a timestamp
column. However, because timestamp columns are
automatically updated by SQL Server, a Null value is
overwritten.

tinyint The SQL Server tinyint datatype is unsigned. A tinyint column
is bound to a variable of type SQL_C_UTINYINT by default.

User-defined
datatypes

When connected to SQL Server version 4.2x, the SQL Server
driver adds NULL to a column definition that does not explicitly
declare a column's nullability. Therefore, the nullability stored

in the definition of a user-defined datatype is ignored.
When connected to SQL Server version 4.2x, columns with a
user-defined datatype that has a base type of char / binary and
for which no nullability is declared are created as type varchar /
varbinary. SQLColAttributes, SQLColumns, and
SQLDescribeCol return SQL_VARCHAR / SQL_VARBINARY
as the datatype for these columns. Data retrieved from these
columns is not padded.

LONG datatypes SQL_LONGVARBINARY data must be passed to SQLPutData
as raw binary data, not as binary data converted to character
data.
Also, data-at-execution parameters are restricted for both the
SQL_LONGVARBINARY and SQL_LONGVARCHAR
datatypes.
For details, see the Data-at-Execution Parameter Limitations
topic.

Nullability Resolution
In the ODBC grammar, columns for which nullability is not specified are assumed to be nullable. In the
SQL Server grammar, columns for which nullability is not specified are assumed to be not nullable.

When connected to SQL Server 6.0, the SQL Server driver resolves this situation by using the SET
ANSI_NULL_DEFAULT_ON ON SQL statement. This causes the server to use a default of NULL for
columns where nullability is not specified except for bit columns or user-defined datatypes.

When connected to SQL Server version 4.2x, the SQL Server driver adds a Null specification to each
column definition in a CREATE TABLE statement that does not specify whether the column is nullable
(except for BIT columns, which are not nullable). It adds a NULL specification to each column definition
in an ALTER TABLE statement (except for BIT columns, which are not nullable).

Using ODBC Cursors
SQL Server 6.0 provides support for engine-based cursors and version 2.5 of the SQL Server driver
has been enhanced to make use of that powerful feature. This section provides a brief overview on
how to use server cursors through the ODBC API.

ODBC Cursor Model
ODBC supports a cursor model allowing for several types of cursors, scrolling within a cursor, several
concurrency options and single row as well as bulk fetches. Unlike ANSI SQL, ODBC does not have
explicit APIs to Declare, Open and Close cursors. Cursors are automatically created for you when you
issue a SQLExecDirect or SQLPrepare + SQLExecute based on the specified statement options.

Type A and Type B Statements
The SQL Server driver uses two types of statements Type A and Type B.

A Type A statement is defined as any statement using the default settings on each of the following
three statement options.

Option Default

SQL_CONCURRENCY SQL_CONCUR_READ_ONLY

SQL_CURSOR_TYPE SQL_CURSOR_FORWARD_ONLY

SQL_ROWSET_SIZE 1

Type A statements do not make use of server cursors. Instead the query is executed at the server and
result sets are passed back to the application. The SQL Server driver allows you to perform SQLFetch
and SQLExtendedFetch (you can change the rowset size after the cursor is open and perform block
fetches) on this data, but the connection between the client and server remains busy until all the data
has been fetched (youve reached the end of the cursor) or the cursor is closed. This option is fast if
youre going to retrieve all rows sequentially and you dont need to perform any updates. Because
server cursors are not used, you cannot do positioned operations (using WHERE CURRENT OF) on
Type A statements.

A Type B statement is defined as any statement not using the default settings on the above three
statement options. Type B statements cause the driver to use server cursors in most cases (please see
the restrictions under Creating Cursors).

Advantages of Using Server Cursors
There are several advantages of using server based cursors implemented in SQL Server 6.0.

· Performance: If you are going to access a small fraction of the data in the cursor (typical of many
browsing applications), using server based cursors will give you a big performance boost since only
the required data (and not the entire result set) is sent over the network.

· Additional cursor types: Keyset and dynamic cursor types are only available if you use server based
cursors. In addition, the cursor library only supports forward only with the read only concurrency and
static with read only and optimistic concurrency. With server based cursors, you can use the full
range of concurrency values with the different cursor types.

· Cleaner semantics: The cursor library simulates cursor updates by generating a SQL searched
update statement. This can sometimes lead to unintended updates.

· Memory usage: When using server based cursors, the client does not need to cache large amounts
of data or maintain information about the cursor position; the server provides that functionality.

· Multiple open cursors: When using server based cursors, the connection between the client and
server does not remain busy between cursor operations. This allows you to have multiple cursors
hstmts active at the same time. As per the ODBC specification, you are still restricted to one cursor
per hstmt. To get around the one active hstmt limitation associated with Type A statements, change
the statement options so you get server cursors associated with Type B statements.

See Also

Creating Cursors

Retrieving Data From Cursors

Updating Cursors

Closing Cursors

Creating Cursors
For the purposes of ODBC cursors, the cursor definition is essentially the SQL statement passed as an
argument to SQLExecuteDirect or SQLPrepare/SQLExecute. The following rules apply when
creating cursors through the SQL Server driver.

· Server cursors are created only for statements that begin with a SELECT, EXEC[ute]
procedure_name, or {call procedure_name} clause. Otherwise, it is treated as a Type A statement.
Server cursors are not created for a SQL batch. They are treated as Type A statements.

· If you ask for a Dynamic or Keyset cursor and there is not a unique index for every table referenced
in the cursor definition, the server creates a static cursor and the driver returns a
SQL_SUCCESS_WITH_INFO status.

· SQL Server allows you to create cursors on base tables as well as views. In addition, cursors can be
opened on a query involving joins between multiple tables and/or aggregate operators. You cannot,
however, use the keywords COMPUTE, COMPUTE BY, FOR BROWSE and INTO in the cursor
definition.

· If the cursor definition involves a UNION, UNION ALL, outer join, GROUP BY with/without HAVING
or DISTINCT, a Static cursor is always created irrespective of what was requested and the Driver
returns an SQL_SUCCESS_WITH_INFO status.

· If you ask for a Dynamic cursor and the cursor definition contains an ORDER BY clause that does
not match a unique index or a subquery, the server creates a Keyset cursor and the driver returns an
SQL_SUCCESS_WITH_INFO status.

· If you ask for a concurrency of row versioning and there is not a TIMESTAMP column for every table
in the cursor definition, the server uses a concurrency based on values and the driver returns an
SQL_SUCCESS_WITH_INFO status.

· You will get a cursor on SQLExecDirect (Exec procedure_name or {Call procedure_name}) only if
the procedure contains one SELECT statement and nothing else. Otherwise, SQL Server generates
an error message. Because of this restriction, you cannot use server cursors with the ODBC catalog
functions (which use stored procedures that contain multiple SELECT statements).

· You will automatically get the cursor behavior associated with Type A statements when executing a
batch containing multiple SELECT statements (except if the first statement is a SELECT, EXECUTE,
or ODBC canonical procedure invocation, in which case, SQL Server driver generates an error
message).

Keyset cursors could also be populated asynchronously (please refer to the SQL Server server
documentation on sp_configure). Asynchronous keyset population does not affect any of the cursor
related ODBC APIs except for SQLRowCount.

The following topics discuss relevant ODBC functions for creating cursors.

SQLSetStmtOption

SQLSetScrollOptions

SQLSetConnectOption

SQLSetCursorName

SQLGetCursorName

SQLGetStmtOption

SQLGetInfo

SQLSetStmtOption
The SQLSetStmtOption function allows the caller to set various options at the statement level. The
following cursor related options are supported.

Option Value

SQL_CONCURRENCY SQL_CONCUR_READ_ONLY
SQL_CONCUR_LOCKING
SQL_CONCUR_ROWVER
SQL_CONCUR_VALUES

SQL_CURSOR_TYPE SQL_CURSOR_FORWARD_ONLY
SQL_CURSOR_STATIC
SQL_CURSOR_KEYSET_DRIVEN
SQL_CURSOR_DYNAMIC

SQL_ROWSET_SIZE Integer value that specifies the number of rows in the
rowset, i.e. the number of rows returned by each call to
SQLExtendedFetch. The default value is 1.

SQL_BIND_TYPE Integer value that sets the binding orientation to be used
when SQLExtendedFetch is called on the associated
hstmt. Both column and row bindings are supported.

SQL Server supports read-only static cursors and these are exposed through the SQL Server driver.
Applications requiring updatable static cursors should choose the Cursor Library implementation by
setting SQL_ODBC_CURSORS to SQL_CUR_USE_ODBC. Cursors provided by the Cursor Library
are implemented at the client. All the data is cached and updates and deletes are issued by
constructing a WHERE clause using the cached values.

Cursors implemented at the server (Forward Only, Keyset, Dynamic, Read Only Static) may be
specified with a concurrency control option of read only, lock, row version or row values. Cursors
implemented by the cursor library may be read only or row values.

Mixed cursors are not supported. The SQL_KEYSET_SIZE value is automatically converted to 0 if a
non-zero value is specified.

SQLSetScrollOptions
The SQLSetScrollOptions function allows the caller to set options that control cursor behavior. In
ODBC 2.0, these options have been superseded by the corresponding options in the
SQLSetStmtOption function and are only supported for backward compatibility. The options fall into
three categories as follows:

Option Value

Concurrency Control SQL_CONCUR_READ_ONLY
SQL_CONCUR_LOCK
SQL_CONCUR_ROWVER
SQL_CONCUR_VALUES

Sensitivity SQL_CURSOR_FORWARD_ONLY
SQL_CURSOR_STATIC
SQL_CURSOR_KEYSET_DRIVEN
SQL_CURSOR_DYNAMIC

Rowset Size Integer value

SQLSetConnectOption
The SQLSetConnectOption function allows the caller to set options that govern aspects of the
connection.

The following cursor related options are supported.

Option Value

SQL_ODBC_CURSORS SQL_CUR_USE_IF_NEEDED
SQL_CUR_USE_ODBC
SQL_CUR_USE_DRIVER

SQL_TXN_ISOLATION SQL_TXN_READ_UNCOMMITTED
SQL_TXN_READ_COMMITTED
SQL_TXN_REPEATABLE_READ
SQL_TXN_SERIALIZABLE
SQL_TXN_VERSIONING option is not supported
(In SQL Server, repeatable read is treated as serializable.)

Driver specific option SQL_PRESERVE_CURSORS that allows you to choose
between closing or preserving the cursor state across
transaction commits/rollbacks. The default is to close
cursors on a transaction commit/rollback.

SQLSetCursorName
The SQLSetCursorName function associates a cursor name with an active hstmt. A cursor name is
automatically created if one is not specified.

SQLGetCursorName
The SQLGetCursorName function returns the cursor name associated with a specified hstmt. The
cursor name can be user specified or system generated. This function can only be called if
SQLSetCursorName has been previously called or after the cursor has been opened (by issuing an
ExecuteDirect, Execute, or Catalog operation). The cursor name is valid for the lifetime of the hstmt,
i.e. if the cursor is closed and another one is opened, the driver re-uses the previous name. Cursor
names are required for issuing positioned updates and deletes.

SQLGetStmtOption
The SQLGetStmtOption function returns the current setting of options specified in
SQLSetStmtOption plus a couple of additional flags. SQL_ROW_NUMBER specifies the number of
the current row in the entire results set. This option is supported for keyset and static cursors;
otherwise, 0 is returned.

SQLGetInfo
The SQLGetInfo function returns information about a specific driver and data source. For values
provided by the SQL Server driver, see the SQLGetInfo Return Values topic.

Retrieving Data From Cursors
There are two ways to retrieve data through cursors.

· You can bind columns of the result set to storage locations using SQLBindCol and then use
SQLFetch to move to the next row in the results set. For bulk fetches, you could bind columns to an
array and use SQLExtendedFetch. The SQL Server driver supports row-wise as well as column-
wise binding. Keep in mind that when using server cursors, each Fetch or Extended Fetch operation
involves a round trip to the server and the connection remains free between these operations. The
server keeps track of all required state information (for example, current cursor position). Also,
cursor operations do not have to be sequential. The server allows you to traverse the cursor in the
forward or backward directions relative to the current position. You can also directly position to an
absolute row number (except for dynamic cursors) in the results set.

· You can retrieve data for unbound columns (columns for which storage has not been allocated). Use
SQLFetch or SQLExtendedFetch to position the cursor on the next row and call SQLGetData to
retrieve data for specific unbound columns. You can call SQLGetData multiple times on the same
column to incrementally read in data. This is useful if you are reading large amounts of data from a
text or image column. Keep in mind, however, that the connection is busy until you read the entire
data associated with the column. If you issue an SQLSetPos with the Position option, the
SQL Server driver flushes the remaining data and frees up the connection, thereby allowing you to
use it for processing on another hstmt.

You can retrieve data from both bound and unbound columns in the same row.

When retrieving rows involving potentially large text and image columns, if you do not want to access
the text data field in the row, dont bind that column. When you do an Extended Fetch, the retrieved row
will only contain the textptr for the unbound column as opposed to the previous behavior of returning
the complete row including the text data.

The following topics discuss relevant ODBC functions:

SQLFetch

SQLExtendedFetch

SQLRowCount

SQLFetch
The SQLFetch function fetches one row of data from the result set. It cannot be mixed with
SQLExtendedFetch for the same cursor. Also, SQLFetch is forward only.

SQLExtendedFetch
The SQLExtendedFetch function returns one rowset (set in SQLSetStmtOption) of data to the
application. It takes as input the statement handle, fetch type, and the number of the row to fetch. It
returns the number of rows actually fetched and optionally, an array containing status values for each
row.

The following fetch types are supported:

SQL_FETCH_NEXT
(required when cursor type is SQL_CURSOR_FORWARD_ONLY)

SQL_FETCH_FIRST

SQL_FETCH_LAST

SQL_FETCH_PRIOR

SQL_FETCH_ABSOLUTE
(not supported for dynamic cursors)

SQL_FETCH_RELATIVE

The SQL_FETCH_BOOKMARK and SQL_FETCH_RESUME types are not supported.

SQLRowCount
If this function is called after the cursor has been opened and the cursor is of type keyset or static, the
SQLRowCount function returns the number of rows in the result set. For dynamic cursors
SQLRowCount always returns 1. If the keyset is being populated asynchronously (please refer to the
SQL Server documentation on sp_configure) SQLRowCount will return 1 until the keyset is fully
populated.

Updating Cursors
Data is usually modified one row at a time (there is an option in SQLSetPos to affect the entire rowset)
by first positioning to the desired row. To position the cursor on a particular row, you can:

· call SQLFetch one or more times.
· call SQLExtendedFetch one or more times.
· call SQLSetPos with the SQL_POSITION option.

There are two ways of modifying data in the results set.

· You can issue an UPDATE WHERE CURRENT OF cursor_name or DELETE WHERE
CURRENT OF cursor_name to update or delete the row currently pointed to by the cursor. The
positioned UPDATE or DELETE statement must be issued on a separate hstmt on the same
connection and requires the cursor name (which you can explicitly set using the
SQLSetCursorName function). This allows you to work with several cursors simultaneously.

· You can use the SQLSetPos function to add, delete and update rows of data. The SQLSetPos API
provides options to specify the desired operation, the target row number and how to lock the row.
SQLSetPos can only be used on rowsets fetched with SQLExtendedFetch.

The following topics discuss relevant ODBC functions:

SQLSetPos

SQLRowCount

SQLSetPos
The SQLSetPos function allows an application to set the cursor position in a rowset and perform an
operation based on that position. The function takes as input the statement handle, position of the row
in the rowset (on which the operation is to be performed), the operation type and an additional
parameter describing how to lock the row after performing the operation.

The irow argument specifies the number of the row (in the rowset) on which to perform the operation. If
irow = 0, the operation applies to the entire rowset.

The following operations are supported:

SQL_POSITION

SQL_REFRESH

SQL_UPDATE

SQL_DELETE

SQL_ADD

The following lock types are supported:

SQL_LOCK_NO_CHANGE

Note that if a row is marked as deleted (SQL_ROW_DELETED), and later a row is inserted with the
same key value(s) as the old row, a SQL_REFRESH operation will show the new row
(SQL_ROW_SUCCESS) in the old position.

SQLRowCount
The SQLRowCount function returns the number of rows affected by an UPDATE, INSERT or DELETE
statement or by the SQL_UPDATE, SQL_ADD, or SQL_DELETE operations in SQLSetPos.
SQLRowCount can be called after a database update has been performed.

Closing Cursors
Cursors are automatically closed if you commit or rollback the transaction. The SQL Server driver
provides a driver-specific connection option, SQL_PRESERVE_CURSORS, to override this behavior
for server cursors. If this option is set to SQL_PC_ON, cursors remain open and the cursor state is
preserved across transaction commits or rollbacks.

The following topics discuss relevant ODBC functions:

SQLFreeStmt

SQLTransact

SQLFreeStmt
The SQLFreeStmt function stops processing associated with a specific statement, closes any open
cursors, discards pending results and optionally frees all resources associated with the statement
handle.

The following cursor related options are supported:

SQL_CLOSE

SQL_DROP

SQLTransact
The SQLTransact function requests a commit or rollback operation for all active operations on all
statements associated with the connection. All open server cursors remain open after this operation if
SQL_PRESERVE_CURSORS has been set to SQL_PC_ON. By default, cursors are closed on
Commit/Rollback.

ODBC API Function Implementation
The SQL Server driver supports translation DLLs as well as the functions listed here. For an
explanation of how each supported function is implemented, click on the function.

Function Description
SQLBrowseConnect SQLBrowseConnect uses three levels of keywords:

1. DSN, DRIVER
2. SERVER, UID, PWD, APP, and WSID
3. DATABASE and LANGUAGE

SQLConnect SQLConnect supports DATABASE and LANGUAGE
defaults.

SQLDriverConnect SQLDriverConnect uses the DSN, DRIVER, SERVER,
UID, PWD, APP, WSID, DATABASE, and LANGUAGE
keywords.

SQLColAttributes,
SQLDescribeCol, and
SQLNumResultCols

If any of these functions are called after a SELECT
statement has been prepared and before it has been
executed, the SQL Server driver uses SET FMTONLY to
cause SQL Server to generate the necessary information
about the result set.

SQLConfigDataSource SQLConfigDataSource adds, modifies, or deletes a data
source dynamically by using keywords to set connect
options.

SQLPrepare SQL Server doesn't directly support the Prepare/Execute
model of ODBC. To prepare an SQL statement, the
SQL Server driver creates a temporary procedure which
compiles it for later execution. Note that generation of stored
procedures for SQLPrepare can be disabled in either the
ODBC SQL Server Driver Setup dialog box or the
SQLSetConnectOption function. If disabled, the SQL
statement is stored sent to the server each it's executed.

SQLParamOptions The SQLParamOptions function allows an application to
specify an array of multiple values for the parameters
assigned by SQLBindParameter. By calling
SQLParamOptions with a crow greater than 1, the driver
generates a SQL statement batch or a stored procedure
batch to execute multiple SQL statements.

SQLDescribeParam The SQLDescribeParam function returns the description of
a parameter marker associated with a prepared SQL
statement.

SQLRowCount If this function is called after a cursor open and the cursor is
of type keyset or static, the function returns the number of
rows in the returns the number of rows in the result set. For
dynamic cursors SQLRowCount always returns 1. If the
keyset is being populated asynchronously SQLRowCount
will return 1 until the keyset is fully populated.

SQLTablePrivileges The driver does not support search patterns for the table
owner and table name parameters.

SQLTables The driver does not support search patterns for the table
qualifier parameter.

SQLBrowseConnect
SQLBrowseConnect uses three levels of connection information. For each keyword, the following
table indicates whether a list of valid values is returned, and whether the keyword is optional. For a
description of the keyword, click on the keyword.

Level Keyword

List of
Valid Values
Returned? Optional? Description

1 DSN N/A No The name of the data
source as returned by
SQLDataSources. The
DSN keyword is not
used if DRIVER is used.

DRIVER N/A No The name of the driver
as returned by
SQLDrivers. The
DRIVER keyword is not
used if DSN is used.
The SQL Server driver
name is {SQL Server}.
(For a 16-bit program
the 32-bit driver name is
{SQL Server (32 bit)}.)

2 SERVER Yes No The name of the server
on the network on which
the data source resides.
When running on
Microsoft Windows NT,
"(local)" can be entered
as the server, in which
case a local copy of
SQL Server can be
used, even when this is
a non-networked
version. Note that when
the 16-bit SQL Server
driver is using "(local)"
without a network, the
"MS Loopback Adapter"
must be installed.

UID No Yes The user login ID.
PWD No Yes

(depends
on the
user)

The user-specified
password.

APP No Yes The name of the
application (AppName)
calling
SQLBrowseConnect.

WSID No Yes The workstation ID.
Typically, this is the
network name of the

computer on which the
application resides.

3 DATABA
SE

Yes Yes The name of the
SQL Server database.

LANGUA
GE

Yes Yes The national language to
be used by SQL Server.

SQLBrowseConnect ignores the values of the Database and Language keywords stored in the
ODBC data source definitions. If the database or language specified in the connection string passed to
SQLBrowseConnect is invalid, SQLBrowseConnect returns SQL_NEED_DATA and the level 3
connection attributes.

SQLBrowseConnect doesn't check user access to all the databases listed with the DATABASE
keyword. If the user doesn't have access to the chosen database, SQLBrowseConnect returns
SQL_NEED_DATA and the level 3 connection attributes.

See Also

SQLConnect

SQLDriverConnect

SQLConnect
The SQLConnect function uses the following keywords:

Para
meter

Implementation

DSN The name of the data source as returned by
SQLDataSources.

UID The user login ID.
Auth
Str

The user-specified authentication string (typically the
password).

SQLConnect retrieves the value of the LANGUAGE keyword from the ODBC data source definition. If
the SQL Server driver is unable to use the specified language, it uses the default language for the
specified user ID, and SQLConnect returns SQL_SUCCESS_WITH_INFO. If SQL Server is unable to
use the default language for the specified user ID, SQLConnect returns SQL_ERROR.

SQLConnect retrieves the value of the DATABASE keyword from the ODBC data source definition. If
the SQL Server driver is unable to use the specified database, it uses the default database for the
specified user ID, and SQLConnect returns SQL_SUCCESS_WITH_INFO. If SQL Server is unable to
use the default database for the specified user ID, SQLConnect returns SQL_ERROR.

See Also

SQLBrowseConnect

SQLDriverConnect

SQLDriverConnect
The SQLDriverConnect connection string uses the following keywords:

Keyword Description
DSN The name of the data source as returned by

SQLDataSources. The DSN keyword is not used if DRIVER is
used.

DRIVER The name of the driver as returned by SQLDrivers. The
DRIVER keyword is not used if DSN is used.
The SQL Server driver name is {SQL Server}.

SERVER The name of the server on the network on which the data
source resides. On a Microsoft Windows NT computer, "(local)"
can be entered as the server, in which case a local copy of
SQL Server can be used, even when this is a non-networked
version. Note that when the 16-bit SQL Server driver is using
"(local)" without a network, the "MS Loopback Adapter" must
be installed.

UID The user login ID.
PWD The user-specified password.
APP The name of the application calling SQLDriverConnect

(optional).
WSID The workstation ID. Typically, this is the network name of the

computer on which the application resides (optional).
DATABASE The name of the SQL Server database (optional).
LANGUAGE The national language to be used by SQL Server (optional).

SQLDriverConnect uses keyword values from the dialog box (if one is displayed). If a keyword value
is not set in the dialog box, SQLDriverConnect uses the value from the connection string. If the value
is not set in the connection string, it uses the value from the ODBC.INI file.

If the fDriverCompletion argument is SQL_DRIVER_NOPROMPT or
SQL_DRIVER_COMPLETE_REQUIRED, the language or database comes from the connection string,
and the language or database is invalid, SQLDriverConnect returns SQL_ERROR.

If the fDriverCompletion argument is SQL_DRIVER_NOPROMPT or
SQL_DRIVER_COMPLETE_REQUIRED, the language or database comes from the ODBC data
source definitions, and the language or database is invalid, SQLDriverConnect uses the default
language or database for the specified user ID and returns SQL_SUCCESS_WITH_INFO.

If the fDriverCompletion argument is SQL_DRIVER_COMPLETE or SQL_DRIVER_PROMPT and the
language or database is invalid, SQLDriverConnect redisplays the dialog box.

For example, to connect to the Human Resources data source on the server HRSERVER using the
login ID Smith and the password Sesame, you would use the following connection string:

DSN=Human Resources;UID=Smith;PWD=Sesame

To specify the Payroll database on the same server, you would use the following connection string:

DSN=Human Resources;UID=Smith;PWD=Sesame;DATABASE=Payroll

To specify the SQL Server driver (the driver name is {SQL Server}) and server name directly without
using a DSN, you would use the following connection string:

DRIVER={SQL Server};SERVER=hrserver;UID=Smith;PWD=Sesame;
 DATABASE=Payroll

See Also

SQLBrowseConnect

SQLConnect

SQLColAttributes, SQLDescribeCol, and
SQLNumResultCols
Microsoft SQL Server returns information about a result set before it returns the data in the result set.
The SQL Server driver returns this information to an application through the SQLColAttributes,
SQLDescribeCol, and SQLNumResultCols functions.

When connected to SQL Server 6.0, the SQL Server driver uses the SET FMTONLY statement to
retrieve the appropriate information about a result set.

When connected to SQL Server version 4.2x, if an application calls any of these functions after a
SELECT statement has been prepared and before it has been executed, the SQL Server driver
submits the SELECT statement with the clause WHERE 1=2. This forces SQL Server to generate a
result set without any rows, but with the information about the result set.

Note When connected to SQL Server 4.2x, SQLColAttributes, SQLDescribeCol, and
SQLNumResultCols cannot return information about a result set generated by a procedure if that
procedure has been prepared but not executed. If the SELECT statement is the first statement in a
batched statement and SQL Server native grammar is used (no semicolons between statements), the
results of these functions are unpredictable. Note also that the word "SELECT" must be the first token
in the buffer. If anything precedes the word "SELECT" in the statement to be prepared, "WHERE 1=2"
will not be added to the SELECT statement and the information about the result set will not be
returned.

SQLConfigDataSource
The SQLConfigDataSource function is used to add, modify, or delete a data source dynamically and
uses the following keywords. Note that only the SERVER keyword is required for this function; all other
keywords are optional.

Keyword Description
ADDRESS The network address of the SQL Server database

management system from which the driver retrieves
data.

DATABASE The name of the SQL Server database.
DESCRIPTION A description of the data in the data source.
LANGUAGE The national language to be used by SQL Server.
NETWORK The network library connecting the platforms on which

SQL Server and the SQL Server driver reside.
OEMTOANSI Enables conversion of the OEM character set to the

ANSI character set if the SQL Server client machine and
SQL Server are using the same non-ANSI character set.
Valid values are YES for on (conversion is enabled) and
NO for off. The default value that's set using the Client
Configuration Tool.

SERVER The name of the network computer on which the data
source resides.

TRANSLATIONDLL The name of the DLL that translates data passing
between an application and a data source.

TRANSLATIONNAME The name of the translator that translates data passing
between an application and a data source.

TRANSLATIONOPTION Enables translation of data passing between an
application and a data source.

USEPROCFORPREPAR
E

Disables generation of stored procedures for
SQLPrepare. Valid values are NO for off (generation is
disabled) and YES for on. The default value (set in the
setup dialog box) is YES.

Note that keyword pairs in SQLConfigDataSource strings are null-byte (\0) terminated, and the string
itself is also null-byte (\0) terminated. For example:

DSN=Human Resources\0SERVER=hrserver\0ADDRESS=hrnetaddr\0
NETWORK=DBMSSOCN\0DATABASE=payroll\0\0

SQLPrepare
SQL Server doesn't directly support the Prepare/Execute model of ODBC.

First, a temporary stored procedure is created from the statement, since stored procedures are an
efficient way to execute a statement more than once. The procedure is named "#odbc#useridentifier",
where user is up to 6 characters of the username and identifier is up to 8 digits and identifies the
statement. The procedure is created at prepare time if all parameters have been set, or at execute time
if all parameters were not set at prepare time or if any parameter has been reset since the procedure
was created. Because of this, SQLExecute can return any errors that SQLPrepare can return.

If the CREATE PROCEDURE returns an error, SQLPrepare submits the statement to SQL Server with
the SET NOEXEC or SET PARSEONLY option (depending on the statement type). SQL Server checks
the syntax of the statement and returns any errors.

If a user cannot create a stored procedure for any reason (such as lack of permission), the SQL Server
driver doesn't use a stored procedure but submits the SQL statement each time SQLExecute is called.

You can disable a generation of stored procedures for SQLPrepare. If disabled, the statement will be
stored and re-executed at execution time. Stored procedure generation can be disabled You can
disable in either of two ways:

· Clearing the Generate Stored Procedures for Prepared Statements option checkbox in the ODBC
SQL Server Driver Setup dialog box.

· Setting the SQL_USE_PROCEDURE_FOR_PREPARE option in the SQLSetConnectOption
function to SQL_UP_OFF.

When stored procedure generation is disabled and the statement is stored and executed at run time, all
syntax error checking is delayed until run time.

Note that if SET NOCOUNT ON has been executed, multiple statements embedded in a stored
procedure don't create multiple results as they should. Row counts generated by SQL statements
inside of a stored procedure are ignored by the driver.

SQLParamOptions
The SQLParamOptions function allows an application to specify an array of multiple values for the
parameters assigned by SQLBindParameter. By calling SQLParamOptions with a crow greater than
1, the driver generates a SQL statement batch or a stored procedure batch to execute multiple SQL
statements.

SQLParamOptions is usually used with DML. Any DDL statements used with SQLParamOptions will
have the same result as executing the statement serially crow times. For statements that do not
contain parameter markers, the statement will still be executed crow times.

A stored procedure batch is used for SQLPrepare / SQLExecute and canonical procedure invocations
that don't use any data-at-execution parameters. Stored procedure output parameters are returned.

A SQL batch (also called a language event) is used for SQL commands and any canonical procedure
invocations that use data-at-execution parameters. Any stored procedure output parameters are not
returned. If a SELECT statement is used, multiple results sets will be returned, and the application
must use SQLMoreResults to process them. After SQLParamData, SQLExecDirect, or SQLExecute
returns success, the value returned in pirow is initially set to 1, and SQLMoreResults increments this
value as you process each results set.

SQLRowCount will return the total of all rows affected by all statements in the SQL or stored
procedure batch that contains no SELECT statements. The value returned by SQLRowCount is
undefined if one or more SELECT statements are included. Also, when the original SQL contains
multiple statements the value returned in pirow can be incorrect.

While processing a batch, SQL Server may return an error. In some cases, SQL Server cancels the
current command only, and the remainder of the batch is processed. For these errors, one or more
executions will fail, and SQLExecDirect, SQLExecute or SQLParamData will return SQL_ERROR.
The value returned in pirow will be set to crow because all parameter rows were processed. SQLError
will return the errors that occurred, but there is no way to determine the parameter row(s) which caused
the error. Because all parameter rows were processed, re-binding and continuing execution is not
necessary.

In other cases, an error causes SQL Server to cancel the entire batch. For these errors, the value
returned in pirow will contain the affected parameter row. You must re-bind and continue execution to
process the remaining parameter rows.

When data truncation occurs for a parameter, processing continues for the remaining parameters.
SQL_SUCCESS_WITH_INFO is returned, along with a warning message. However, when an error
(such as a conversion error) occurs on the client for one of the parameters the entire batch execution is
stopped, and no execution is done for any row.

While SQLParamData returns SQL_NEED_DATA, it updates the value of pirow as it processes data-
at-exec parameters, and the final SQLParamData updates the value of pirow based on any errors
encountered during execution. Thus the value in pirow may be larger during the data-at-exec
parameter processing than it is after the execution has completed if an error is encountered with a row
during execution.

When connected to SQL Server 4.2x, SQLParamOptions has the following limitations:

· SQL Server 4.2x is limited to approximately 128,000 bytes for a single language event. If using
SQLParamOptions causes this limit to be exceeded, the driver will return the SQL Server error
message.

· SQL Server 4.2x does not support stored procedure batches. Thus, any stored procedure output
parameters are not returned.

Note that when you pass a non-NULL value for pirow, the driver will continue to place the current row
number in that memory address, even if SQLParamOptions is effectively "turned off" by passing a

crow of 1. Thus, if the pirow address supplied by the application becomes an invalid address (for
example, a local variable leaving scope) it is possible that the driver might fail.

SQLDescribeParam
The SQLDescribeParam function returns the description of a parameter marker associated with a
prepared SQL statement.

Parameter markers must appear in the correct ODBC locations, as specified in the Microsoft ODBC 2.0
Programmer's Reference and SDK Guide. Also, the driver does not support the following items:

· Calling SQLDescribeParam after execution.
· Calling SQLDescribeParam for stored procedure calls. It is recommended that

SQLProcedureColumns be used for stored procedures.
· The Transact-SQL FROM clause extension to UPDATE and DELETE statements.
· Parameter markers in a sub query. The driver will return an error.

SQL Support
The SQL Server driver fully supports the core SQL grammar, with the exception of the USER keyword.
The SQL Server driver also supports almost all SQL statements in the extended ODBC grammar. In
accordance with the design of ODBC, the SQL Server driver will pass native SQL grammar to
SQL Server.

For details on the implementation and limitations of ODBC SQL grammar by the SQL Server driver, see
the following Help topics.

SQL Grammar Limitations

Non-supported ODBC SQL Grammar

Nullability Resolution

SQL Grammar Limitations
The SQL Server driver and SQL Server impose the following programming limitations on the ODBC
SQL grammar:

SQL Grammar Limitation
Data-at-Execution
Parameter Limitations

Data-at-execution parameters that are used to send more
than 65,535 bytes of data for an SQL_LONGVARCHAR or
SQL_LONGVARBINARY column are subject to a number of
restrictions.
For details, see the Data-at-Execution Parameter Limitations
topic.

OUTER JOIN The search condition for an outer join must be an equals
condition (=). The ODBC outer join extension must appear last
in the table reference list.
SQL Server does not support both nested outer joins and
inner joins nested within an outer join. A table cannot be the
inner table in an outer join and still participate in an inner join.
A table cannot be the inner table in an outer join and the outer
table in another outer join. A table can, however, participate in
an inner join and be the outer table in an outer join.

Procedures A procedure must be invoked as the first statement in a
prepared batch of statements or it must be invoked with the
EXECUTE keyword or using the ODBC canonical procedure
innovation.
For details, see the Procedure Invocation Limitations topic.

Data-at-Execution Parameter Limitations
If you use a data-at-execution parameter to send more than 65,535 bytes of data for an
SQL_LONGVARCHAR (text) or SQL_LONGVARBINARY (image) column, it is subject to the following
restrictions:

· It can be used only as an insert_value in an INSERT statement.
· It can be used only as an expression in the SET clause of an UPDATE statement.
· It cannot be used in a statement with data-at-execution parameters that have a datatype other than

SQL_LONGVARCHAR or SQL_LONGVARBINARY.
· It can be used in a statement with non-data-at-execution parameters of any datatype.
· If its value is NULL, the cbColDef argument in SQLBindParameter and the cbValueMax argument

in SQLPutData must be SQL_NULL_DATA.
· Canceling the operation (calls to SQLPutData for a column after SQLParamData returns

SQL_NEED_DATA) before completion will cause a partial update. The text or image column you
were processing when you canceled will be set to an intermediate "place holder" value, and any
unprocessed text or image columns remain unchanged.

Procedure Invocation Limitations
If a statement that executes a procedure is the first statement in a batch, the EXECUTE keyword is not
needed. If such a statement is not the first statement, the EXECUTE keyword must be present. This is
because the SQL Server driver surrounds a statement it is preparing with other SQL statements. Thus,
the statement being prepared is no longer the first in the batch.

For maximum interoperability, procedures should be invoked using the ODBC extension to the SQL
designed for this purpose. With the SQL Server driver, there is no advantage to preparing a statement
that invokes a procedure (instead of executing it directly). When the Generate Stored Procedures for
Prepared Statements option is selected, the SQL Server driver prepares a statement by placing it in a
procedure and compiling that procedure.

Preparing a statement by placing it in a procedure and compiling can be disabled, however. To ensure
that stored procedures are never used to implement SQLPrepare, clear the Generate Stored
Procedures option checkbox in the SQL Server Setup Dialog Box, or set the
SQL_USE_PROCEDURE_FOR_PREPARE option in SQLSetConnectOption to SQL_UP_OFF. This
will ensure that a prepared statement will be stored and executed at run time. Stored procedures will
then not be used to implement SQLPrepare. In addition, all syntax error checking will be delayed until
execution time.

When a SET NOCOUNT ON statement is executed, multiple statements embedded in a stored
procedure do not create multiple results as they should. The driver ignores row counts generated by
SQL statements inside of a stored procedure.

Literals as Parameters to Stored Procedure Calls

Note that a literal of NULL cannot be passed to a stored procedure parameter defined as datetime or
smalldatetime.

Cursors Using Stored Procedures

Server cursors can only be opened on a stored procedure that contains a single SELECT statement.
Using a stored procedure that contains no SELECT statements, or more than one SELECT statement,
will generate an error. Because of this restriction, server cursors cannot be used with the ODBC
catalog functions.

Non-supported ODBC SQL Grammar
The SQL Server driver fully supports all core and extended ODBC SQL grammar with the following
exceptions.

Non-supported
Grammar Description
DAYOFWEEK The scalar function DAYOFWEEK is not supported when connected

to 4.2x. The function is supported when connected to SQL Server
6.0.

DELETE The WHERE CURRENT OF cursor_name clause (positioned delete
statement) is not supported when connected to SQL Server version
4.2x.

DROP INDEX table_name, index_name must be used instead of just index_name.
IEF None of the clauses in the Integrity Enhancement Facility (IEF) are

supported when connected to SQL Server version 4.2x.
MAX, MIN The DISTINCT keyword is not supported for these set functions.
SELECT The FOR UPDATE OF clause (SELECT-FOR-UPDATE statement)

is not supported when connected to SQL Server version 4.2x.
UPDATE The WHERE CURRENT OF cursor_name clause (positioned

UPDATE statement) is not supported when connected to
SQL Server version 4.2x.

USER The USER keyword is not supported, except in the DEFAULT
clause of the IEF.

Active hstmt
The SQL Server driver can have only one active hstmt unless it is used with server cursors; it returns
this information through SQLGetInfo with the SQL_ACTIVE_STATEMENTS option. An hstmt is defined
as active if it has results pending. In this context, results are any information returned by SQL Server,
such as a result set or a count of the rows affected by an UPDATE statement.

Note An hstmt's activity is not related to its state. For example, if a SELECT statement is executed
and it doesn't return any rows, the statement is not active, since no results are pending. However,
before the statement can be executed again, the cursor associated with it must be closed with
SQLFreeStmt.

Server cursors allow multiple active statements on a single connection when connected to SQL Server
6.0.

When connected to SQL Server version 4.2x, the SQL Server driver supports only one active
statement per connection. The cursor library (shipped with the SQL Server driver) allows applications
to use multiple active statements on a connection.

Cursor Library
The cursor library (shipped with the SQL Server driver) allows applications to use multiple active
statements on a connection, and scrollable, updateable cursors. The cursor library (ODBCCURS.DLL
(16-bit) or ODBCCR32.DLL (32-bit)) must be loaded in order to support this functionality. Use
SQLSetConnectOption to specify how the cursor library should be used and SQLSetStmtOption to
specify the cursor type, concurrency, and rowset size.

Arithmetic Errors
If an arithmetic error such as divide-by-zero or a numeric overflow occurs during execution of a SQL
statement, the statement is aborted. Partial results may have already been sent to the client and
maybe delivered to the application before the application is notified of the error.

The driver sets ARITHABORT to ON.

For more information, see SET ARITHABORT and SET ARITHIGNORE in the Microsoft SQL Server
Transact-SQL Reference.

Manual-commit Mode Transactions
When the SQL Server driver is in manual-commit mode, it initiates a transaction with a BEGIN
TRANSACTION statement in the following situations:

· An SQL statement is pending.
· There is no current transaction.
· It is not a restricted Data Definition Language (DDL) statement.

For more information about restricted DDL statements, see the section on Transactions in the
Microsoft SQL Server Transact-SQL Reference documentation for the list of statements that cannot
be in a transaction.

To commit or roll back a transaction in manual-commit mode, the application must call SQLTransact.
The SQL Server driver sends a COMMIT TRANSACTION statement to commit a transaction; it sends a
ROLLBACK TRANSACTION statement to roll back a transaction.

A restricted DDL statement can be executed only in manual-commit mode under one of the following
circumstances:

· After manual commit mode has been set and before a non-restricted DDL or a Data Manipulation
Language (DML) statement has been executed, or

· After a transaction has been committed or rolled back and before a non-restricted DDL or a DML
statement has been executed.
For more information about manual-commit mode, see SQLSetConnectOption in the Microsoft
ODBC SDK Programmer's Reference.

The following ODBC catalog functions cannot be called inside a transaction because they used catalog
stored procedures that create temporary tables:

SQLColumnPrivileges
SQLForeignKeys
SQLPrimaryKeys (limited on SQL Server 4.2x only)
SQLStatistics
SQLTablePrivileges

Remote Procedure Calls
The SQL Server driver uses the remote procedure call (RPC) facility in SQL Server to run procedures
rather than pass procedures to SQL Server in an SQL statement. A procedure can be a prepared
statement (which is a statement that is stored as a procedure), a procedure called with the ODBC
procedure syntax, or a stored procedure that the SQL Server driver uses to implement a catalog
function. RPCs have the following advantages over procedures passed in an SQL statement:

· RPCs are faster than procedures passed in an SQL statement.
· RPCs can have output parameters (however, see "Limitations", below); procedures passed in an

SQL statement cannot. (A procedure can return a value in either case.)

To run a statement as an RPC, an application
1. Constructs an SQL statement.
2. Calls SQLBindParameter for each parameter in the statement.
3. Prepares the statement with SQLPrepare. (Note that the

SQL_USE_PROCEDURE_FOR_PREPARE connection option must be set to SQL_UP_ON.)
4. Executes the statement with SQLExecute.

To run a procedure as an RPC, an application
1. Constructs an SQL statement that uses the ODBC procedure syntax. The statement uses parameter

markers for each input, input/output, and output parameter, and for the procedure return value (if
any).

2. Calls SQLBindParameter for each input, input/output, and output parameter, and for the procedure
return value (if any).

3. Executes the statement with SQLExecDirect.

Note If an application submits a procedure using the SQL Server syntax (as opposed to the ODBC
procedure syntax), the SQL Server driver passes the procedure call to SQL Server as an SQL
statement rather than as an RPC.

Limitations

RPCs are executed as language events (EXEC Procname Params) if any parameter is bound to using
SQL_DATA_AT_EXEC.

When an RPC is executed as a language event, no output parameter values are returned.

Output parameters of a stored procedure procedure are also input parameters, although the stored
procedure many not use the input value. However, a valid input value must be provided to prevent
conversion errors.

For input/output parameters and output parameters, the length/precision (cbColDef) and scale
(ibScale) set using SQLBindParameter limit the maximums that the output value can contain.

References
For more information on the ODBC SQL Server Driver, see the following resources:

Reference Source
Microsoft ODBC 2.0 Programmer's
Reference and SDK Guide

Microsoft Press

ODBC API Reference SQL Server Books Online
SQL Server documentation SQL Server Books Online

Glossary
API
Application programming interface. A set of routines available in an application for use by software
programmers when designing an application.

character set
A character set is a set of 256 letters, numbers, and symbols specific to a country or language. Each
character set is defined by a table called a code page. An OEM (Original Equipment Manufacturer)
character set is any character set except the ANSI character set. The ANSI character set (code page
1252) is the character set used by Microsoft Windows.

conformance level
Some applications can use only drivers that support certain levels of functionality, or conformance
levels. For example, an application might require that drivers be able to prompt the user for the
password for a data source. This ability is part of the conformance level for the application
programming interface (API).

Every ODBC driver conforms to one of three API levels (Core, Level 1, Level 2) and one of three SQL
grammar levels (Minimum, Core, Extended). ODBC drivers can support some of the functionality in
levels above their stated level.

For detailed information about conformance levels, see the Microsoft ODBC SDK Programmer's
Reference.

data source
A data source contains data and the information needed to access that data. Examples of data sources
are:

· A SQL Server database, the server on which it resides, and the network used to access that server.
· A directory containing a set of dBASE files.

DBMS
Database management system. The software used to organize, analyze, search for, update, and
retrieve data.

DDL
Data definition language. Any SQL statement that can be used to define data objects and their
attributes. Examples include CREATE TABLE, DROP VIEW, and GRANT statements.

DLL
Dynamic-link library. A set of routines that one or more applications can use to perform common tasks.
The ODBC drivers are DLLs.

DML
Data manipulation language. Any SQL statement that can be used to manipulate data. Examples
include UPDATE, INSERT, and DELETE statements.

ODBC
Open Database Connectivity. A Driver Manager and a set of ODBC drivers that enable applications to
access data using SQL as a standard language.

ODBC Driver Manager
A dynamic-link library (DLL) that manages access to ODBC drivers.

ODBC driver
A dynamic-link library (DLL) that an ODBC-enabled application, such as Microsoft Excel, can use to
gain access to a data source. Each database management system (DBMS), such as Microsoft SQL
Server, requires a driver.

SQL
Structured Query Language. A language used to retrieve, update, and manage data.

SQL statement
A command written in Structured Query Language (SQL); also known as a query. An SQL statement
specifies an operation to perform, such as SELECT, DELETE, or CREATE TABLE; the tables and
columns on which to perform that operation; and any constraints to that operation.

translation option
An option that specifies how a translator translates data. For example, a translation option might
specify the character sets between which a translator translates character data. It might also provide a
key for encryption and decryption.

translator
A dynamic-link library (DLL) that translates all data passing between an application, such as Microsoft
Access, and a data source. The most common use of a translator is to translate character data
between different character sets. A translator can also perform tasks such as encryption and decryption
or compression and decompression.

